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Abstract. Several types of totally asymmetric diffusion models with and without exclusion
are considered. For some models, conditional probabilities of findingN particles on lattice
sitesx1, . . . , xN at time t with initial occupationy1, . . . , yN at time t = 0 are expressed in
a determinant form. On the other hand, theq-boson totally asymmetric diffusion model is
introduced which interpolates the free boson model and the model with exclusion-like interaction.
The effects of the interaction are compared for the case of two-particle diffusion.

1. Introduction

Recently, one-dimensional stochastic models have been intensively studied [1, 2]. We
may list reasons of the motivations. First, the models are useful in the study of non-
equilibrium statistical physics. They are defined by rather simple rules but are sufficiently
complex so as to exhibit rich non-equilibrium behaviours. Particularly in low dimensions,
the effects of fluctuations are so strong that the system cannot be described by a simple
mean-field theory and more elaborated treatments are needed. Second, applicability of the
models is not restricted to physics. They are also useful in many fields of sciences such
as chemistry, biology and social science. There are many interesting stationary and time-
dependent properties of ‘open’ systems to be explained. Third, we can relate the seemingly
different subjects in statistical physics. While the models are suitable for numerical studies,
some models can be solved exactly by analytical methods such as the Bethe ansatz and
the free fermion theory. The models provide many good examples to investigate how far
applicability of such techniques can be extended without losing real physical significance.

In this paper, we deal with the one-dimensional asymmetric diffusion models. The
models are physically relevant to describe the gas flows in a narrow tube driven by some
external field. The asymmetric simple exclusion process (ASEP) is the most famous example
of such models [3, 4]. The model has applications to a variety of interesting phenomena
from interface growth to traffic flow [2, 5]. It is a model for particles on a lattice, where each
particle hops to the right (left) nearest-neighbouring site with the probabilityDRdt (DLdt)
in every infinitesimal time interval dt . In addition, each site of the lattice can contain only
one particle: each site is either occupied or empty. This constraint is interpreted as a hard-
core exclusion among particles and is regarded as the origin of the interesting behaviours
of the model. In particular, the ASEP is considered to belong to the Kardar–Parisi–Zhang
(KPZ) universality class from the analysis of the Bethe ansatz equations [6–9]. Although
many exact results are reported on this model, the time-dependent properties of the model
have not been well understood.
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In [10], theN -particle Green’s function for the ASEP on an infinite lattice is shown to
be written in a determinant form. This expression is valid only for the totally asymmetric
case (DR = 1,DL = 0), which we refer to as the TASEP. Very recently, the determinant
representations for Green’s function have been obtained for the drop-push model [12] and
a derivative nonlinear Schrödinger-type model [13]. A main purpose of this paper is to
investigate in detail the determinant form Green’s function. It will be shown that such
formula is valid for a wide class of totally asymmetric diffusion models.

One of the models with the determinant formula is a model which is written in terms
of the so-called phase operators. We call the model the phase model hereafter. Whereas
particles also hop in one direction in this model, the interaction of the particles is slightly
different from the TASEP. The model was introduced in [14] and was shown to be integrable
with the sameR-matrix as that for the TASEP. Hence, although particles do not have the
exclusion property in this model, the model is expected to be in the same universality class
as the TASEP. In this paper, we show that, at least for the two-particle problem, these two
models show similar behaviours in the asymptotic regime.

In addition, we introduce theq-boson totally asymmetric diffusion model, which is
slightly different from the model in [15–18]. We show the integrability of the model and
study the two-particle diffusion. This model is interesting since it contains the free boson
model and the phase model as special limits. Hence, theq-boson model to be considered
can be an appropriate candidate to study the crossover behaviours from the single-particle
asymmetric random walk to the KPZ universality class. Such crossover behaviours may
be observed experimentally, for instance, by varying the radius of the tube in which a gas
flows. When the radius of the tube is large, interactions among particles are scarce and
the dynamics of each particle is well described by the single-particle asymmetric random
walk. On the other hand, for a very narrow tube, the system is expected to be in the KPZ
universality class since exclusion interactions have significant effects on the properties of
the system. In theq-boson model, we can consider that the radius of the tube is efficiently
taken into account through the value of the parameterq.

This paper is organized as follows. Several types of totally asymmetric diffusion models
are defined in section 2. In section 3, it is shown that we can obtain the determinant form
Green’s function for a wide class of totally asymmetric diffusion models. In section 4,
the eigenvalue problem for the TASEP-type model is solved by the Bethe ansatz method.
Using the obtained expression, we study the two-particle diffusion problem. As a model
which connects the phase model and the free boson model, we introduce theq-boson totally
asymmetric diffusion model in section 5. The integrability is proved and the two-particle
diffusion problem is investigated. The final section is devoted to concluding remarks.

2. Definition of the models

Consider a system of particles where they move and interact stochastically on a lattice in
one dimension. Time evolution for the system can be described by the master equation,

d

dt
|P(t)〉 = −H |P(t)〉. (2.1)

HereH is a time evolution operator specified by the rules for the process and the state
|P(t)〉 represents the probability distribution of the system. Although the operatorH is in
general non-Hermitian, it will be called a Hamiltonian hereafter. We may consider (2.1) as
an (imaginary-time) Schrödinger equation.
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When we consider a system of exclusive particles, i.e. a case where at most one particle
is allowed to be on each lattice site, it is useful to express the Hamiltonian in the spin-1

2
variables [19]. We identify the ‘unoccupied’ state with ‘spin-up’ state and the ‘occupied’
state with the ‘spin-down’ state. The ASEP is a model of such exclusive particles, each of
which diffuses to the right nearest-neighbouring site with rateDR and to the left nearest-
neighbouring site with rateDL. In this paper, we restrict our attention mainly to the
TASEP, where particles hop only in one direction(DR = 1,DL = 0). The Hamiltonian for
the TASEP in the spin-12 variables is given by

HTASEP= −
∑
j

[s+j s
−
j+1− nj (1− nj+1)] (2.2)

where s±j , nj are defined through the Pauli’s matricesσx,y,zj by s±j = 1
2(σ

x
j ± iσyj ), nj =

1
2(1− σ zj ). As a natural generalization of the TASEP, we define ‘m-TASEP’ for which the
Hamiltonian is given by

Hm-TASEP= −
∑
j

[s+j s
−
j+1− nj (1− nj+1)](1− nj+2) . . . (1− nj+m). (2.3)

The original TASEP corresponds tom = 1. As can be seen from the Hamiltonian, each
particle can hop to the right nearest-neighbouring site only when the distance to the right
nearest particle is greater than or equal tom. We notice that the integerm is regarded as
the length (size) of each particle.

On the other hand, when we consider a system of non-interacting particles without
exclusion, the Hamiltonian is expressed in terms of the boson operators[20, 21]. The
Hamiltonian is provided by

Hboson= −
∑
j

(b
†
j+1− b†j )bj (2.4)

where creation operatorsb†j and annihilation operatorsbj obey the bosonic commutation

relations [bj , bk] = [b†j , b†k] = 0, [bj , b
†
k] = δjk. Since the Hamiltonian (2.4) is quadratic in

terms of the boson operators, we call this model the free boson model.
In this paper, we also study another model of interacting particles without exclusion.

The model is defined in terms of theq-boson operatorsB†j and Bj . With the number
operatorNj , these operators form the following algebra,

[Nj, B
†
k ] = B†j δjk [Nj, Bk] = −Bjδjk

[Bj , B
†
k ] = q−2Nj δjk.

(2.5)

In terms of these operators, a totally asymmetric diffusion model can be defined by the
Hamiltonian,

Hq-boson= −
∑
j

(B
†
j+1− B†j )Bj . (2.6)

In [15–18], a slightly differentq-boson Hamiltonian was considered. Their Hamiltonian is,
however, not stochastic except whenq → 1. Our Hamiltonian (2.6) is stochastic for any
q > 0. When we take the limitq → 1, the q-bosons become ordinary bosons and the
q-boson Hamiltonian (2.6) reduces to the free boson Hamiltonian (2.4).

We can take another limitq → ∞. In this limit, it is known that theq-boson
operators become the so-called phase operators [14, 15]. They are defined by the following
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commutation relations,

[Nj, φ
†
k ] = φ†j δjk [Nj, φk] = −φjδjk

[φj , φ
†
k ] = πjδjk

(2.7)

whereπj is the vacuum projectorπj = |0〉j 〈0|j . The Hamiltonian is given by

Hphase= −
∑
j

(φ
†
j+1− φ†j )φj

= −
∑
j

(φ
†
j+1φj + πj )+ constant (2.8)

where we usedφ†j φj = 1− πj . As recently shown by Bogoliubovet al [14, 15], the phase
model (2.8) is integrable with the sameR-matrix as that for the TASEP. Hence the model
is expected to belong to the KPZ universality class.

3. Determinant form solution for the master equation

For the TASEP and some related models, it has been shown that the Green’s function for
N particles can be expressed in a determinant form [10, 12, 13]. In this section, we show
that the similar determinant representation for the Green’s function is realized for a wide
class of totally asymmetric diffusion models. Let us denote the Green’s function forN

particles asP(x1, . . . , xN ; t |y1, . . . , yN ; 0). It is defined as the solutionP(x1, . . . , xN ; t) of
the master equation∂P/∂t = −HP with the initial condition,

P(x1, . . . , xN ; t = 0) = δx1y1 . . . δxNyN . (3.1)

In statistical mechanics, it is the conditional probabilities of findingN particles on lattice
sitesx1, . . . , xN at time t with initial occupationy1, . . . , yN at time t = 0.

3.1.m-TASEP

In this section, them-TASEP (2.3) is considered. First we write down the master equation
for the process. Before discussing the generalN -particle case, we proceed with theN = 1
andN = 2 cases. ForN = 1, the equation is given by

∂

∂t
P (x; t) = P(x − 1; t)− P(x; t). (3.2)

This is nothing but the Poisson process and the Green’s function is given by

P(x; t |y; 0) = tx−y

(x − y)! e−t . (3.3)

Here the factorial is defined by the0-function, i.e.x! = 0(x+ 1). Since0(x) has poles at
non-positive integers, expression (3.3) vanishes for the regionx < y. This corresponds to
the fact that the particle never hops to the left.

Next we consider theN = 2 case. Notice that the integerm restricts an allowed
region (physical region) of the coordinatesx1, x2. The physical region for them-TASEP is
x2− x1 > m. Whenx2− x1 > m, the master equation reads

∂

∂t
P (x1, x2; t) = P(x1− 1, x2; t)+ P(x1, x2− 1; t)− 2P(x1, x2; t). (3.4)
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At the boundary of the physical region (i.e. whenx2−x1 = m), the master equation depends
on the integerm. For them-TASEP, it reads

∂

∂t
P (x1, x1+m; t) = P(x1− 1, x1+m; t)− P(x1, x1+m; t). (3.5)

The master equation at the boundary of the physical region can be replaced by the boundary
condition for the probability distributionP(x1, x2; t). In other words, equation (3.5) is
equivalent to putting the boundary condition,

P(x1, x1+m− 1; t) = P(x1, x1+m; t). (3.6)

Similarly, the master equation for generalN -particle case is given by

∂

∂t
P (x1, . . . , xN ; t) = P(x1− 1, . . . , xN ; t)+ · · · + P(x1, . . . , xN − 1; t)

−NP(x1, . . . , xN ; t) (3.7)

with the boundary condition,

P(. . . , xj , xj +m− 1, . . . ; t) = P(. . . , xj , xj +m, . . . ; t) (j = 1, . . . , N − 1). (3.8)

Until now, the value of the integerm has been assumed to be greater than or equal to 1
implicitly. However, it turns out that the boundary condition for the phase model (2.8) is
nothing less than equation (3.6) form = 0. Hence we can deal with the phase model within
the same formulation assuming that the value of the integerm is m > 0. As a comment,
we notice that we can also consider them < 0 case if we distinguish theN particles.

TheN -particle Green’s function for them-TASEP can be written in a determinant form:

P(x1, . . . , xN ; t |y1, . . . , yN ; 0) = detF (3.9)

where the matrix elements of the matrixF are assumed to be of the form,

Fjk = Fj−k(xk − yj ; t). (3.10)

In a visual fashion, relation (3.9) with (3.10) looks like

P(x1, . . . , xN ; t |y1, . . . , yN ; 0)

=

∣∣∣∣∣∣∣∣
F0(x1− y1; t) F−1(x2− y1; t) · · · F−N+1(xN − y1; t)
F1(x1− y2; t) F0(x2− y2; t) · · · F−N+2(xN − y2; t)

...
...

. . .
...

FN−1(x1− yN ; t) FN−2(x2− yN ; t) · · · F0(xN − yN ; t)

∣∣∣∣∣∣∣∣ . (3.11)

There is an arbitrariness for the functionFn(x; t). If we defineF̂n(x; t) = anFn(x; t) for a
non-zeroa, it gives the same value for the determinant: detF = detF̂ . The parametera
will be chosen following [10].

Let F (m)n (x; t) denoteFn(x; t) for them-TASEP. For the TASEP (m = 1), the solution
is known to be

F (1)n (x; t) = e−t
∞∑
l=0

[
l − n− 1

l

]
tx+l

(x + l)! . (3.12)

We list the properties of the functionF (1)n (x; t). It has an integral representation,

F (1)n (x; t) = 1

2π

∫ 2π

0
dp (1− e−i(p+i0))neipx−εpt (3.13)

whereεp = 1−e−ip. The shiftp→ p+ i0 is chosen in order to satisfy the initial condition
(3.1). It satisfies the master equation for theN = 1 case (cf (3.2)),

∂tF
(1)
n (x; t) = F (1)n (x − 1; t)− F (1)n (x; t). (3.14)
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For n > 0, it reduces to a finite sum,

F (1)n (x; t) = e−t
n∑
l=0

(−)l
[
n

l

]
tx+l

(x + l)! . (3.15)

In addition, we can calculate the value for the limitt →+0. Forn > 0, we find

F (1)n (x; 0) =
n∑
l=0

(−)l
[
n

l

]
δx+l,0 (3.16)

whereas forn < 0, we have

F (1)n (x; 0) = α(x)
[−n− x − 1

−x
]

(3.17)

whereα(x) = 0(x > 0), 1(x 6 0).
TheF (m)n (x; t) for them-TASEP is simply given by

F (m)n (x; t) = F (1)n (x + n(m− 1); t). (3.18)

The proof is almost the same as for them = 1 case and the main points are summarized
as follows. First the master equation (3.7) is satisfied sinceF (m)n (x; t) satisfies the master
equation forN = 1. Second the boundary condition (3.8) is fulfilled since theF (m)n (x; t)
satisfies

F (m)n (x +m− 1; t)− F (m)n (x +m; t) = F (m)n+1(x; t). (3.19)

Finally, it can be shown by using (3.16) and (3.17) that, whent → +0, the determinant
satisfies the initial condition (3.1) in the physical region.

3.2. Drop-push-type model

Recently it has been shown that it is possible to derive the determinant formula of the
Green’s function for the drop-push model [11, 12]. The Hamiltonian of the model is given
by

Hdrop-push= −
∑
j

∞∑
k=1

[s+j nj+1 . . . nj+k−1s
−
j+k − njnj+1 . . . nj+k−1(1− nj+k)]. (3.20)

In this model, even if the right nearest-neighbouring site is occupied, a particle hops to
the site, pushing the right neighbouring particles to the next sites. The processes such as
10→ 01, 110→ 011, 1110→ 0111, . . . occur with equal rate, where ‘0’ and ‘1’ indicates
the empty site and the occupied site. In terms of the boundary condition for the probability
distributionP(x1, . . . , xN ; t), the model corresponds to the condition,

P(. . . , xj , xj + 1, . . . ; t) = P(. . . , xj + 1, xj + 1, . . . ; t) (j = 1, . . . , N − 1). (3.21)

We can generalize the model by considering the boundary condition,

P(. . . , xj , xj +m, . . . ; t) = P(. . . , xj + 1, xj +m, . . . ; t) (j = 1, . . . , N − 1).

(3.22)

We call this model them-drop-push model in the following. The original drop-push model
corresponds to the choicem = 1. For N -particle Green’s function of them-drop-push
model, a similar situation occurs as for them-TASEP. If we denoteFn(x; t) for them-drop-
push model byF̃ (m)n (x; t), it is simply given by

F̃ (m)n (x; t) = F̃ (1)n (x + n(m− 1); t). (3.23)
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Here F̃ (1)n (x; t) is Fn(x; t) for the drop-push model,

F̃ (1)n (x; t) = (−)ne−t
∞∑
l=0

[
l + n− 1

l

]
tx−l

(x − l)! (3.24)

and is given in an integral representation as

F̃ (1)n (x; t) = 1

2π

∫ 2π

0
dp (e−i(p−i0) − 1)−neipx−εpt . (3.25)

In this expression, we have putp → p − i0 in order to satisfy the initial condition. Then
we can calculate the limitt →+0. Forn 6 0, we have

F̃ (1)n (x; 0) =
−n∑
l=0

(−)l
[−n
l

]
δx+n+l,0 (3.26)

and forn > 0, we find

F̃ (1)n (x; 0) = (−)nθ(x)
[
n+ x − 1

x

]
(3.27)

whereθ(x) = 1(x > 0), 0(x < 0). The proof that the determinant (3.9) with the choice
(3.23) gives theN -particle Green’s function is almost the same as for them-TASEP case
and is therefore omitted.

We notice that theF̃ (m)n (x; t) for n 6 0 is equivalent toF (1−m)−n (x; t):
F̃ (m)n (x; t) = F (1−m)−n (x; t) (n 6 0). (3.28)

It is extremely interesting to observe that the same function appears in the Green’s function
for different models, i.e. for them-drop-push model and the (1−m)-TASEP.

3.3. Continuum model

In [13], it was shown that a derivative nonlinear Schrödinger (DNLS) type model can be
regarded as a continuum limit of the ASEP. The Hamiltonian of the model is given by

HDNLS = −
∫

dx ψ†(x)∂2
xψ(x)+ 2α

∫
dx ψ†(x)∂xψ

†(x)ψ(x)ψ(x) (3.29)

whereα is a real parameter. The operatorsψ andψ† obey the commutation relations for
bosons; [ψ(x), ψ(y)] = [ψ†(x), ψ†(y)] = 0, [ψ(x), ψ†(y)] = δ(x− y) with δ(x) being the
δ-function. The master equation for this model reads

∂

∂t
P (x1, . . . , xN ; t) =

N∑
j=1

∂2
j P (x1, . . . , xN ; t)

+2α
∑
j<k

δ(xj − xk)(∂j + ∂k)P (x1, . . . , xN ; t). (3.30)

In view of the initial condition, the Kronecker’s delta in (3.1) is replaced by the Dirac’s
delta function,

P(x1, . . . , xN ; 0) = δ(x1− y1) . . . δ(xN − yN). (3.31)

It has been shown that forα = 1 we can represent theN -particle Green’s function in a
determinant form [13].

It turns out that the determinant formula is also valid for theα = −1 case. The details
will not be displayed since the discussion proceeds almost in the same way as for theα = 1
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case. As will become clear, this choice may be regarded as a continuum limit of the drop-
push model. Whenα = −1, the second sum in the right-hand side of (3.30) is equivalent
to putting the following boundary conditions,

∂jP (. . . , xj , xj+1, . . .)|xj=xj+1 = 0 (j = 1, . . . , N − 1). (3.32)

If we denote the functionFn(x; t) for α = −1 case asF̃n(x; t), the integral representation
of it is given by

F̃n(x; t) = 1

2π

∫ ∞
−∞

dp (p − i0)−ne−p
2t+ipx. (3.33)

We notice the similarity between (3.25) and (3.33). We can obtain more explicit expressions.
For n 6 0, we have

F̃n(x; t) = 1√
2π

e−
x2

4t (2t)(n−1)/2(i)−nH−n

(
x√
2t

)
(3.34)

whereHn(x) are the Hermite polynomials. These functions appear in the Green’s function
for the α = 1 case as well [13]. The situation is analogous to relation (3.28). Forn > 0
we can obtain the explicit expression forF̃n(x; t) by using the recursion relation,

F̃n(x; t) = ix

n− 1
F̃n−1(x; t)− 2t

n− 1
F̃n−2(x; t). (3.35)

For instance, the first two functions are given explicitly as

F̃0(x; t) = 1√
4πt

e−x
2/4t

F̃1(x; t) = i√
4πt

∫ x

−∞
dy e−y

2/4t .

(3.36)

In almost the same way as in [13], one can prove that the determinant (3.9) with the above
F̃n(x; t) gives the Green’s function for the DNLS-type model withα = −1.

3.4. Model with coagulation

Since the introduction for the TASEP in [10], one of the interesting questions has been
whether the determinant formula is related to some other known objects. In this section,
we show that the above determinant formula can be regarded as a deformation of the Slater
determinant type Green’s function.

As an example, consider a totally asymmetric diffusion model for exclusive particles
with the following Hamiltonian,

Hcoag= −
∑
j

[s+j s
−
j+1− nj (1− nj+1)+ c(s+j − nj )nj+1)] (3.37)

with 0 6 c 6 1. Unlike the models considered so far, there occurs a particle coagulation
11→ 01 with ratec. The c = 0 case corresponds to the TASEP. On the other hand, the
c = 1 case is known to be solvable by the free fermion method [22]. This fact suggests
that some correlation functions for the model (3.37) withc = 1 are written in a Slater
determinant form. In fact, the conditional probabilityP(x1, . . . , xN ; t |y1, . . . , yN ; 0) of
finding N particles on lattice sitesx1, . . . , xN at time t with initial occupationy1, . . . , yN
at time t = 0 is written in the form, (3.9) and (3.10), with the choice,

Fn(x; t) = F0(x; t) = tx

x!
e−t (3.38)
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for all n. This expression is indeed the Slater determinant form.
It turns out that the conditional probabilityP(x1, . . . , xN ; t |y1, . . . , yN ; 0) for the model

(3.37) with any value ofc can also be written in a determinant form (3.9). The function
Fn(x; t) is given by

F (c)n (x; t) = e−t
∞∑
l=0

(1− c)l
[
l − n− 1

l

]
tx+l

(x + l)! . (3.39)

This is a simple generalization of (3.12) and reduces to expressions (3.12) and (3.38), when
c = 0 andc = 1 respectively. Hence, we can say that the determinant formula of the Green’s
function first introduced in [10] is regarded as a deformation of the Slater determinant for
the free fermion models.

4. Bethe ansatz and two-particle diffusion form-TASEP

In this section, we restrict out attention to them-TASEP. We solve the eigenvalue problem
by the Bethe ansatz and derive theS-matrices of the process. First we solve the two-particle
problem. If we assume the time dependence asP(x1, x2; t) = e−EtP (x1, x2) in the master
equation (3.4), the resulting equation is

EP(x1, x2) = −P(x1− 1, x2)− P(x1, x2− 1)+ 2P(x1, x2). (4.1)

The boundary condition is the same as in the previous section (cf (3.6)),

P(x1, x1+m− 1) = P(x1, x1+m). (4.2)

We assume that the wavefunction is written in the form,

P(x1, x2) = A12eip1x1+ip2x2 + A21eip2x1+ip1x2 (x2− x1 > m). (4.3)

Form = 0, this assumption may seem too simple. In general, we have to consider the case
x1 = x2 separately. But it turns out that it is sufficient to consider the wavefunction (4.3)
for them-TASEP. In the next section we shall see that the wavefunction of theq-boson
model cannot be written as a single expression (4.3) except whenq →∞. From condition
(4.1) forx2−x1 > m, the energy is easily calculated asE = εp1+εp2, whereεp = 1−e−ip.
The boundary condition (4.2) leads to the two-bodyS-matrix for them-TASEP,

S12 = A21

A12
= eip2(m−1) − eip2m

eip1(m−1) − eip1m
. (4.4)

Using eigenfunction (4.3), we can construct the Green’s functionP(x1, x2; t |y1, y2; 0),

P(x1, x2; t |y1, y2; 0) =
(

1

2π

)2 ∫ 2π

0
dp1

∫ 2π

0
dp2 e−(εp1+εp2)t−ip1y1−ip2y2

×(eip1x1+ip2x2 + S12eip2x1+ip1x2) (4.5)

where we shift the pole inS12 asp1→ p1+ i0 to satisfy the initial condition.
Further, the eigenvalue problem forN particles,

EP(x1, . . . , xN) = −
N∑
j=1

P(x1, . . . , xj − 1, . . . , xN)+NP(x1, . . . , xN) (4.6)

can also be solved by the Bethe ansatz. For a fixed set of momentap1, . . . , pN , the
wavefunction for the regionxj+1 − xj > m is taken as a linear combination of the plane
waves,

Pp1,...,pN (x1, x2, . . . , xN) =
∑
σ∈SN

Aσ(1)σ (2)...σ (N)e
ipσ(1)x1+···+ipσ(N)xN (4.7)
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where the symbolSN denotes all permutations ofN numbers{1, . . . , N} and σ is an
element ofSN . If we setA1...N = 1, the coefficientsAσ(1)...σ (N) are written as

Aσ(1)σ (2)...σ (N) = sgnσ
N∏
j=1

(eipσ(j)(m−1) − eipσ(j)m)σ(j)−j (4.8)

where sgnσ indicates the signature of the permutationσ . Thus, the wavefunction (4.7) is
expressed as

Pp1,...,pN (x1, x2, . . . , xN) = detW (4.9)

with the matrix elements,

Wjl = (eipj (m−1) − eipjm)j−leipj xl . (4.10)

Settingpj → pj + i0, we can rederive the determinant form Green’s function (3.9) obtained
in the previous section.

Next we study how the interaction of them-TASEP affects the diffusion of two particles.
Although the two-particle system seems trivial, it reflects the characteristic behaviours of
the driven system at finite particle density. For instance, it was shown that the collective
diffusion constant is enhanced for the TASEP [10]. This enhancement may be related to
the superdiffusive spreading of a local inhomogeneity in a homogeneous background with
finite density [2]. We show that the drift velocity and the collective diffusion constant for
them-TASEP are independent of the value ofm. This fact suggests that them-TASEP have
common properties even when the particle density is large and are in the same universality
class.

We introduce the expectation value〈nx〉 of particle number on sitex at timet and define
the moments of it. For the two-particle case, the first and second moments are given by

〈X〉 = 1
2

∑
x

x〈nx〉 = 1
2

∑
x2−x1>m

(x1+ x2)P (x1, x2; t)

〈X2〉 = 1
2

∑
x

x2〈nx〉 = 1
2

∑
x2−x1>m

(x2
1 + x2

2)P (x1, x2; t).
(4.11)

In terms of these moments, the drift velocityv and collective diffusion constant1 are
defined as

v = d

dt
〈X〉

1 = d

dt
(〈X2〉 − 〈X〉2).

(4.12)

For comparison, we note that these quantities for the free boson model (2.4) are easily
calculated as

v = 1 = 1 (free boson case). (4.13)

For them-TASEP, the time evolution equation for〈nx〉 satisfies the continuity equation,

d

dt
〈nx〉 = 〈jx−1〉 − 〈jx〉 (4.14)

with the current being

〈jx〉 =
∑

y(6x−m)
P (y, x; t)+

∑
y(>x+m)

P (x, y; t)− P(x, x +m; t). (4.15)
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If we define the quantities,

P0 =
∑
x

P (x, x +m; t)

P1 =
∑
x

xP (x, x +m; t)
(4.16)

the drift velocity and the collective diffusion constant are rewritten as

v = 1
2

∑
x

〈jx〉

= 1− 1
2P0 (4.17)

1 = v − 2v〈X〉 +
∑
x

x〈jx〉

= v + 2(1− v)〈X〉 − P1. (4.18)

Using expression (4.5), we can calculate the asymptotic forms ofP0 andP1,

P0→ 1√
πt

(4.19)

P1→
√
t

π
− 1

2
. (4.20)

Inserting these expressions into (4.17) and (4.18), we obtain

v→ 1 (4.21)

1→ 3

2
− 1

π
(4.22)

as t →∞. From (4.22) and (4.13), we see that the collective diffusion constant increases
by 1

2 − 1/π as compared with the bosonic case. The enhancement does not depend on the
integerm. In particular, we find that the properties of the two-particle diffusion for the
phase model (m = 0) and the TASEP (m = 1) are the same asymptotically. This suggests
that the two models belong to the same KPZ universality class.

5. q-boson totally asymmetric diffusion model

As noted in the introduction, the free boson model (2.4) and the phase model (2.8) are both
limiting cases of theq-boson model (2.6). Here we show the integrability of theq-boson
model with periodic boundary condition and study the two-particle diffusion problem on
the infinite lattice.

5.1. Integrability and algebraic Bethe ansatz

Only in this section, we consider the periodic model on a finite lattice with lengthM. Define
theL-operator for theq-boson model at lattice sitej as

Lj(u) =
[
u−1− γ uq−2Nj χB

†
j

χBj u

]
(5.1)

where χ =
√

1− q−2, γ is a parameter andu is the spectral parameter. We use the

standard notations such as
1
Lj(u) = Lj(u)⊗ 1,

2
Lj(u) = 1⊗Lj(u). TheL-operator satisfies

the bilinear relation (Yang–Baxter relation),

R12(u, v)
1
Lj(u)

2
Lj(v) =

2
Lj(v)

1
Lj(u)R

12(u, v) (5.2)
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for the (gauge-transformed) trigonometricR-matrix,

R(u, v) =


f (v, u) 0 0 0

0 q−1 g(v, u) 0
0 g(v, u) q 0
0 0 0 f (v, u)

 (5.3)

with the matrix elements defined by the functions,

f (v, u) = qu2− q−1v2

u2− v2
g(v, u) = (q − q−1)uv

u2− v2
. (5.4)

TheL-operator (5.1) is a generalization of theL-operator in [15], where the parameterγ
is set to zero. As will be seen, we can derive the stochasticq-boson Hamiltonian (2.6)
from theL-operator (5.1). In addition, it is known that the ASEP has the sameR-matrix
[8]. Hence we can expect that the ASEP and theq-boson model (2.6) may share common
properties. Due to the locality of theL-operator, the monodromy matrix,

T (u) = LM(u) . . . L1(u) =
[
A(u) B(u)

C(u) D(u)

]
(5.5)

satisfies the relation,

R12(u, v)
1
T (u)

2
T (v) =

2
T (v)

1
T (u)R12(u, v). (5.6)

If we introduce the transfer matrixτ(u) by

τ(u) = Tr T (u) = A(u)+D(u) (5.7)

it follows from (5.6) that the transfer matrices with different spectral parameters commute;

[τ(u), τ (v)] = 0. (5.8)

In addition, we find

− 1

χ2

∂

∂u2
(uMτ(u))|u=0 = −

M∑
j=1

(B
†
j+1+ γB†j )Bj +

M

χ2
(5.9)

whereBM+1 = B1. Hence, theq-boson Hamiltonian (2.6) is obtained by puttingγ = −1. It
commutes with the transfer matrix (5.7). In this way, we have proved that the transfer matrix
is a generator of mutually commuting conserved operators and the model is integrable.

The eigenvectors of the transfer matrix and hence of the Hamiltonian are of the form,

|8(u1, . . . , uN)〉 =
N∏
j=1

B(uj )|0〉. (5.10)

Here the parametersuj in (5.10) satisfy the Bethe equations,[
a(uj )

d(uj )

]M
=

N∏
k(6=j)

f (uk, uj )

f (uj , uk)
(j = 1, . . . , N) (5.11)

with the functionsa(u) andd(u) defined by

a(u) = u−1− γ u d(u) = u. (5.12)

The above construction of the eigenvectors is a standard procedure of the algebraic Bethe
ansatz method.
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5.2. Two-particle diffusion

Next we consider the two-particle diffusion problem on the infinite lattice. We are interested
in how the expressions of the collective diffusion constants for the free boson model (4.13)
and the phase model (4.22) are connected by the parameterq. In this section, we setγ = −1
to study theq-boson model with stochastic interpretation. Introducing the momentum
variablep by

eip = d(u)

a(u)
= 1

u−2+ 1
(5.13)

we write down the Bethe ansatz wavefunction for two particles from (5.10). If we normalize
the wavefunction forx1 = x2 by setting

P(x1, x1) = ei(p1+p2)x1 (5.14)

the wavefunction forx2− x1 > 0 is calculated as

P(x1, x2) = A12eip1x1+ip2x2 + A21eip2x1+ip1x2 (5.15)

where

A12 = q−2eip1 − eip2 + (1− q−2)ei(p1+p2)

eip1 − eip2

A21 = q−2eip2 − eip1 + (1− q−2)ei(p1+p2)

eip2 − eip1
.

(5.16)

SinceA12+ A21 = 1+ q−2, we have to consider thex1 = x2 case separately except when
q →∞, which corresponds to the phase model.

The two-particle Green’s functionP(x1, x2; t |y1, y2; 0) can be constructed by integrating
the eigenfunction, (5.14) and (5.15), with an appropriate coefficient. By using the contour
integration, we can show

P(x1, x2; t |y1, y2; 0) =
(

1

2π

)2 ∫ 2π

0
dp1

∫ 2π

0
dp2 e−(εp1+εp2)t−ip1y1−ip2y2

×(eip1x1+ip2x2 + S12eip2x1+ip1x2) (5.17)

with

S12 = A21

A12
= q−2eip2 − eip1 + (1− q−2)ei(p1+p2)

q−2eip1 − eip2 + (1− q−2)ei(p1+p2)
(5.18)

for x2− x1 > 0. To satisfy the initial condition, the pole inS12 is shifted aspj → pj + i0.
On the other hand, forx1 = x2, we have

P(x, x; t |y1, y2; 0) =
(

1

2π

)2 ∫ 2π

0
dp1

∫ 2π

0
dp2 e−(εp1+εp2)t+i(p1+p2)x−ip1y1−ip2y2

× eip1 − eip2

q−2eip1 − eip2 + (1− q−2)ei(p1+p2)
. (5.19)

Compare this expression with that for the ASEP [10]. In contrast to the ASEP case, we
do not have to take the bound-state contributions into account for theq-boson model. In
general, there seems to be no bound states for ‘totally’ asymmetric diffusion models.

For theq-boson model, the current〈jx〉 in (4.14) is given by

〈jx〉 =
∑
y(>x)

P (y, x; t)+
∑
y(<x)

P (x, y; t)+ (1+ q−2)P (x, x; t). (5.20)
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Hence the drift velocityv and the collective diffusion constant1 are rewritten as

v = 1− 1− q−2

2
P0 (5.21)

1 = v + 2(1− v)〈X〉 − (1− q−2)P1 (5.22)

whereP0 =
∑

x P (x, x; t) andP1 =
∑

x xP (x, x; t). Inserting the asymptotic forms ofP0

andP1,

P0→ 1

(1+ q−2)
√
πt

(5.23)

P1→ 1

1+ q−2

√
t

π
− 1− q−2

2(1+ q−2)2
(5.24)

into (5.21) and (5.22), we finally find

v→ 1

1→ 1+
(

1

2
− 1

π

)(
1− q−2

1+ q−2

)2 (5.25)

as t →∞. This expression interpolates between the free boson case (4.13) and the phase
model case, (4.21) and (4.22).

6. Concluding remarks

In this paper we have obtained some exact results for asymmetric diffusion models. First
we found that the determinant formula of theN -particle Green’s function is valid for a wide
class of totally asymmetric diffusion models. The models with such determinant solution
include the phase model, them-TASEP, them-drop-push model and the derivative nonlinear
Schr̈odinger-type model with special values of the coupling constant. We have also found
that such novel representation of the Green’s function is regarded as a deformation of the
Slater determinant-type correlation functions for the free fermion models. On the other
hand, we have introduced a new model, theq-boson totally asymmetric diffusion model,
which connects the free boson model and the phase model. The integrability of the model
has been proved by generalizing theL-operator in [15]. The Bethe ansatz equations for the
q-boson model will be analysed in future publications. It is interesting to see whether the
model belongs to the KPZ universality class or not.

For the m-TASEP and theq-boson model, the two-particle diffusion problem has
been studied. The collective diffusion constant for them-TASEP has been shown to be
independent of the integerm. It suggests that the phase model and the TASEP are in the
same universality class. For theq-boson model, the expression for the collective diffusion
constant has been obtained which interpolates the free boson model and the phase model.

Acknowledgments

The authors would like to thank to K Hikami for fruitful discussions and comments. TS is
a Research Fellow of the Japan Society for the Promotion of Science.

References

[1] Privman V (ed) 1997Nonequilibrium Statistical Mechanics in One Dimension(Cambridge: Cambridge
University Press)



Totally asymmetric diffusion models 6071

[2] Schmittmann B and Zia R K P1995 Statistical mechanics of driven diffusive systemsPhase Transitions and
Critical Phenomenaed C Domb and J Lebowitz (London: Academic)

[3] Ligget T M 1985 Interacting Particle Systems(New York: Springer)
[4] Spohn H 1991Large Scale Dynamics of Interacting Particles(New York: Springer)
[5] Schreckenberg M, Schadschneider A, Nagel K and Ito N 1995Phys. Rev.E 51 2339
[6] Kardar K, Parisi G and Zhang Y-C 1986Phys. Rev. Lett.56 889
[7] Gwa L and Spohn H 1992Phys. Rev.A 46 844
[8] Kim D 1995 Phys. Rev.E 52 3512
[9] Noh J D and Kim D 1995Phys. Rev.E 53 3225
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